首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 代少升,黄向康,黄 涛,等.一种基于深度学习的驾驶员打电话行为检测方法[J].电讯技术,2021,61(7): - .    [点击复制]
  • DAI Shaosheng,HUANG Xiangkang,HUANG Tao,et al.A driver's calling behavior detection method based on deep learning[J].,2021,61(7): - .   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 2853次   下载 60 本文二维码信息
码上扫一扫!
一种基于深度学习的驾驶员打电话行为检测方法
代少升,黄向康,黄涛,王海宁,梁辉
0
(重庆邮电大学 通信与信息工程学院,重庆 400065;东北大学 计算机科学与工程学院,沈阳 110167)
摘要:
针对现有驾驶员打电话行为检测方法存在精度低、实时性能差以及免提通话无法检测等问题,提出一种基于深度学习的多特征融合检测方法。该方法通过融合手持电话行为与讲话行为检测结果,实现对驾驶员打电话行为的检测。基于构建的浅层卷积神经网络,包含5层特征提取网络以及2层全连接层,可实现对听筒及免提接听两种手持电话行为的检测;同时,通过级联形状回归算法得到嘴部18个特征点及其宽高比,并根据连续20帧图像的嘴巴宽高比振荡差值来检测讲话行为。实验结果表明,该方法在实际驾驶场景下的平均检测准确率达到95.6〖WT《Times New Roman》〗%〖WTBZ〗,平均检测耗时低至230 ms/frame,综合检测性能得到明显改善。
关键词:  行为检测  手持电话检测  讲话行为检测  卷积神经网络  分类判别
DOI:
基金项目:国家自然科学基金资助项目(61671094)
A driver's calling behavior detection method based on deep learning
DAI Shaosheng,HUANG Xiangkang,HUANG Tao,WANG Haining,LIANG Hui
(School of Communications and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;School of Computer Science and Engineering,Northeastern University,Shenyang 110167,China)
Abstract:
For the problems of low accuracy,poor realtime performance and inability to detect handsfree calls in the existing detection methods of drivers calling behavior,a multifeature fusion detection method based on deep learning is proposed.The method combines the results of hand holding behavior and speech behavior to detect the drivers calling behavior.The constructed shallow convolutional neural network(SCNN) consists of five feature extraction layers and two fullyconnected layers.It can detect two types of handset behavior:telephone receiver and handsfree answering.At the same time,the speech behavior is detected by the oscillation difference of the mouth width to height ratio of 20 consecutive images,which is obtained by the 18 feature points of the mouth generated by the cascading shape regression algorithm.The experimental results show that the average detection accuracy of the proposed method in actual driving scenarios reaches 95.6〖WT《Times New Roman》〗%〖WTBZ〗,and the average detection time is as low as 230 ms/frame.The comprehensive detection performance of the method is improved obviously.
Key words:  behavior detection  hand held phone detection  speech behavior detection  convolutional neural network  classification discriminant
安全联盟站长平台