首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 向 涛,乔文昇,邓永兴,等.基于逆注意力机制和像素相似度学习的图像分割[J].电讯技术,2020,(8): - .    [点击复制]
  • XIANG Tao,QIAO Wensheng,DENG Yongxing,et al.Image Segmentation Based on Inverse Attention Mechanism and Pixel Similarity Learning[J].,2020,(8): - .   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 2621次   下载 55 本文二维码信息
码上扫一扫!
基于逆注意力机制和像素相似度学习的图像分割
向涛,乔文昇,邓永兴,王延斌
0
(中国西南电子技术研究所,成都610036;解放军78125部队,成都 610036)
摘要:
针对图像语义分割中目标边界容易混淆、定位不准以及边界不平滑问题,在Deeplab v2 Resnet-101网络的基础上引入提出的逆注意层与像素相似度学习层,构造了一种新的语义分割的网络结构,并设计了注意力层和像素相似度学习层的损失函数。首先,使用Deeplab v2 Resnet-101网络提取图像语义特征;然后,利用提出的逆注意力层修正预测网络的分割结果,同时,利用提出的像素相似度学习层解决边界不够平滑的问题;最后融合两者分割的结果,得到语义分割的结果。在PASCAL-Context上取得了像素准确度76.2%、像素平均准确度59.7%、平均IoU(Intersection over Union)准确度指标49.9%的结果,在PASCAL Person-Part、NYUDv2、MIT ADE20K数据集上分别取得了平均IoU准确度指标69.6%、42.1%、44.38%的结果,与已有的主流方法相比,所提算法能够提升语义分割的精确度,验证了算法的有效性。
关键词:  图像语义分割  逆注意力机制  相似度学习  卷积神经网络
DOI:
基金项目:
Image Segmentation Based on Inverse Attention Mechanism and Pixel Similarity Learning
XIANG Tao,QIAO Wensheng,DENG Yongxing,WANG Yanbin
(Southwest China Institute of Electronic Technology,Chengdu 610036,China;Unit 78125 of PLA,Chengdu 610036,China)
Abstract:
To solve the problems of inaccuracy and unsmoothness of the object boundary in image semantic segmentation,the reverse attention mechanism and pixel similarity learning are incorporated into a new network architecture based on the Deeplab v2 Resnet-101,and loss functions for the reverse attention mechanism and the pixel similarity learning are designed respectively.First,the Deeplab v2 Resnet-101 is used to extract semantic features.Then,the proposed reverse attention layer is used to modify the segmentation results of the prediction network,and the proposed pixel similarity learning layer is used to smooth the segmentation of boundaries.Finally,the results of semantic segmentation are obtained by merging the two segmentation results.The proposed method is evaluated on 4 datasets.In the Pascal context,the method achieves 76.2% of the pixel accuracy,59.7% of the pixel average accuracy and 49.9% of the average intersection over union(IoU) accuracy.In the Pascal Person-Part,the NYUDv2 and the MIT ADE20K,the method achieves 69.6%,42.1% and 44.38% of the average IOU accuracy respectively.Compared with the existing methods,the proposed method can improve the accuracy of semantic segmentation and the experimental results verify the effectiveness of the method.
Key words:  image semantic segmentation  reverse attention mechanism  similarity learning  convolutional neural network
安全联盟站长平台