首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 徐胜,卢广阔.采用USRP、RFNOC和Keras的信号盲识别[J].电讯技术,2020,(7): - .    [点击复制]
  • XU Sheng,LU Guangkuo.Adaptive Blind Signal Recognition with USRP, RFNOC and Keras[J].,2020,(7): - .   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 2869次   下载 54 本文二维码信息
码上扫一扫!
采用USRP、RFNOC和Keras的信号盲识别
徐胜,卢广阔
0
(1.海军装备部 项目管理中心,北京100841;中国西南电子技术研究所,成都 610036)
摘要:
随着信号采集设备的带宽越来越宽,大量感兴趣或者不感兴趣信号被捕捉,多信号的盲识别问题是一个难题,更是一个亟需解决的问题。传统的识别大都基于功率、频谱或相位等诸多先验知识进行模板匹配,但在全盲条件下对多信号进行自适应识别是一个更加复杂的问题。为此,提出了一种基于通用软件无线电外设(Universal Software Radio Peripheral,USRP)、片上射频网络(RF Network on Chips,RFNOC)和Keras的自适应信号盲识别算法。首先构造基于深度学习的神经网络,然后使用初始IQ数据、初始功率谱密度数据和快速傅里叶变换(Fast Fourier Transform,FFT)累积算法处理后的谱相关密度数据等三种不同的初始数据去训练它,利用其自适应性实现多信号的盲识别,最后通过基于USRP、RFNOC和Keras的软硬件验证了该算法的有效性和鲁棒性。
关键词:  盲信号识别  通用软件无线电外设  片上射频网络  神经网络  深度学习
DOI:
基金项目:
Adaptive Blind Signal Recognition with USRP, RFNOC and Keras
XU Sheng,LU Guangkuo
(1.Project Management Center,Navy Equipment Department,Beijing 100841,China;Southwest China Institute of Electronic Technology,Chengdu 610036,China)
Abstract:
The adaptive blind classification and recognition of the received communication signals in real time is a challenging but necessary task.Without prior knowledge of the received data,such as power,frequency,and phase,coupled with real-world concerns such as signal degradation and interference,the task of reconstructing the sent information is made even more complex.The proposed approach for blind classifying the live over-the-air signals received by the electronic warfare(EW) equipment,involves using universal software radio peripheral(USRP) plus RF network on chips(RFNOC) to train a series of neural networks by deep learning over a set of IQ,power spectrum density(PSD) and spectrum correlation density(SCD) data types.Finally,simulation results demonstrate the effectiveness and superiority of the proposed algorithm.
Key words:  blind signal recognition  universal software radio peripheral(USRP)  RF network on chips(RFNOC)  neural network  deep learning
安全联盟站长平台