首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 马 松,刘 田,尚建忠,等.语义分割网络下的混合信号频谱分离[J].电讯技术,2020,(4): - .    [点击复制]
  • MA Song,LIU Tian,SHANG Jianzhong,et al.Spectra Separation via Semantic Segmentation Network[J].,2020,(4): - .   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 3141次   下载 59 本文二维码信息
码上扫一扫!
语义分割网络下的混合信号频谱分离
马松,刘田,尚建忠,余湋,穆航,陈霄南,王军
0
(中国西南电子技术研究所,成都 610036;西安卫星测控中心,西安 710043;电子科技大学 通信抗干扰技术国家级重点实验室,成都 611731)
摘要:
单通道接收机下,多个时频混合信号的分离属于非稀疏欠定信号分离问题,难以求解。针对这类非稀疏欠定信号分离问题,提出了一种基于语义分割网络、从频域实现多个指定类别信号分离的新方法。利用语义分割网络提取信号的频域分布特征,克服了单通道接收机下信号先验信息过少的问题。仿真表明,该方法具有较高的分离精度,且响应时间短,可用于单通道接收机中时频混叠信号的分离。
关键词:  信号分离  语义分割网络  非稀疏欠定信号分离
DOI:
基金项目:
Spectra Separation via Semantic Segmentation Network
MA Song,LIU Tian,SHANG Jianzhong,YU Wei,MU Hang,CHEN Xiaonan,WANG Jun
(Southwest China Institute of Electronic Technology,Chengdu 610036,China;China Xi′an Satellite Control Center, Xi′an 710043,China;National Key Laboratory of Communication,University of Electronic Science and Technology of China,Chengdu 611731,China)
Abstract:
Separating multiple time-frequency aliasing signals via a single channel receiver is a non-sparse underdetermined signal separation (NUSS) problem,which is hard to tackle.In this paper,a new semantic segmentation network (SSN) based method is proposed to separate multiple specific time-frequency aliasing signals in frequency domain.By using a well-designed SSN,the frequency distribution features of each signal component are extracted to combat with the lack of prior information of signal sources via a single channel receiver.Simulation results show that the proposed method achieves desirable separation accuracy with short response time,which can be applied to multiple time-frequency aliasing signals’ separation for a single channel receiver.
Key words:  signal separation  semantic segmentation network  non-sparse underdetermined signal separation
安全联盟站长平台