首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 李华楠,曹 林,王东峰,等.结合匈牙利指派和改进粒子滤波的多目标跟踪算法[J].电讯技术,2019,(5): - .    [点击复制]
  • LI Huanan,CAO Lin,WANG Dongfeng,et al.A multi-target tracking algorithm combining Hungarian assignment and improved particle filter[J].,2019,(5): - .   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 2667次   下载 53 本文二维码信息
码上扫一扫!
结合匈牙利指派和改进粒子滤波的多目标跟踪算法
李华楠,曹林,王东峰,付冲
0
(北京信息科技大学 通信工程系,北京 100101;1.北京信息科技大学 通信工程系,北京 100101;2.北京川速微波科技有限公司,北京 100018;东北大学 计算机科学与工程学院,沈阳 110004)
摘要:
使用汽车雷达进行多目标跟踪时,为了提高航迹关联效率并改善非线性场景跟踪效果,提出了结合匈牙利指派和卡尔曼重要性采样的粒子滤波(Particle Filter with Kalman Importance Sampling,PF-KIS)算法。首先,将航迹关联分解为聚类和指派,通过密度聚类筛选并整合有效目标,经过匈牙利指派得到目标和航迹的最佳匹配关系,避免产生多余联合事件,提高关联效率;其次,以卡尔曼滤波的结果作为粒子滤波的先验,使采样粒子分布更合理,提高估计精度,进而改善非线性跟踪能力。实验表明,算法平均航迹关联正确率约为95%;非线性场景误差约为卡尔曼滤波的1/2,有效地改善了非线性场景跟踪能力。
关键词:  汽车雷达  多目标跟踪  航迹关联  密度聚类  匈牙利指派  粒子滤波  卡尔曼重要性采样
DOI:
基金项目:国家自然科学基金资助项目(61671069)
A multi-target tracking algorithm combining Hungarian assignment and improved particle filter
LI Huanan,CAO Lin,WANG Dongfeng,FU Chong
(Department of Telecommunication Engineering,Beijing Information Science and Technology University,Beijing 100101,China;1.Department of Telecommunication Engineering,Beijing Information Science and Technology University,Beijing 100101,China;2.Beijing TransMicrowave Technology Co., Ltd.,Beijing 100080,China;School of Computer Science and Engineering,Northeastern University,Shenyang 110004,China)
Abstract:
When using vehicle radar for multi-target tracking,in order to improve the track correlation efficiency and tracking performance in nonlinear scenes,an algorithm based on particle filter with Kalman importance sampling(PF-KIS) and Hungarian assignment is proposed.Firstly,track association is divided into clustering and assignment.The effective target is screened and integrated by density clustering.And the best matching relationship between target and track is obtained through Hungary assignment,which avoids generating redundant joint events so as to improve the association efficiency.Secondly,the result of Kalman filter is used as the prior of particle filter,which makes the sampling particle distribution more reasonable,improves the estimation precision,then proceeds to the next step to improve the nonlinear tracking ability.Experiments show that the average track correlation precision of the proposed algorithm is about 95%;the nonlinear scene error is about 1/2 of the Kalman filter,which effectively improves the nonlinear scene tracking ability.
Key words:  automotive radar  multi-target tracking  track association  density clustering  Hungary assignment  particle filter  Kalman importance sampling
安全联盟站长平台