首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 成磊峰.基于无监督学习的目标轨迹预测[J].电讯技术,2018,58(2): - .    [点击复制]
  • CHENG Leifeng.Target trajectory prediction based on unsupervised learning[J].,2018,58(2): - .   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 3303次   下载 537 本文二维码信息
码上扫一扫!
基于无监督学习的目标轨迹预测
成磊峰
0
(中国西南电子技术研究所,成都 610036)
摘要:
针对情报与侦察监视领域中目标轨迹预测问题,提出了一种基于无监督学习的预测方法。首先,根据历史信息分析目标历史活动规律;其次,构建隐马尔科夫模型,通过无监督学习自动实现预测目标在栅格网中的运动方向;最后,根据学习得到的运动方向和目标运动速度信息,计算未来短期内的目标轨迹。数值仿真验证了该方法能够有效地预测目标在未来短时刻内(通常为5 min)的运动轨迹。
关键词:  情报侦察监视  目标轨迹预测  目标历史信息  活动规律分析  无监督学习  栅格化
DOI:
基金项目:
Target trajectory prediction based on unsupervised learning
CHENG Leifeng
()
Abstract:
Aiming at the problem of target trajectory prediction in the field of intelligence and reconnaissance surveillance,a prediction method based on unsupervised learning is proposed.Firstly,a target historical activity pattern is analyzed according to historical information.Secondly,the hidden Markov model is constructed and the motion direction of the prediction target in the grid is automatically realized by unsupervised learning.Finally,The target trajectory in the short term is calculated according to the learning direction of motion and the speed of target motion.Numerical simulations show that the proposed method can effectively predict the trajectory of the target in the short time (usually 5 minutes).
Key words:  intelligence and reconnaissance surveillance  target trajectory prediction  target historical information  activity pattern analysis  unsupervised learning  rasterize
安全联盟站长平台