首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 詹益旺,胡斌杰.基于手机信令的城市道路交通状态实时预测[J].电讯技术,2017,57(1): - .    [点击复制]
  • ZHAN Yiwang,HU Binjie.Real-time forecasting urban traffic state based on cell phone signaling[J].,2017,57(1): - .   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 2993次   下载 2441 本文二维码信息
码上扫一扫!
基于手机信令的城市道路交通状态实时预测
詹益旺,胡斌杰
0
(华南理工大学 电子信息学院,广州 510640;广州杰赛科技股份有限公司,广州 510310)
摘要:
为准确、实时预测道路交通状态,通过分析影响交通的因素,利用决策树算法对速度和环境因素等数据进行建模,确定交通拥堵发生的规则,在此基础上结合实时的移动用户和环境因素数据对交通状态进行预测。以中国河北保定城区为例进行实验,验证了该方法的有效性。同时,研究发现,基于决策树算法进行道路交通状态预测的方法具有较好的扩展性。
关键词:  智慧城市  智能交通  交通状态预测  手机信令  决策树  随机森林
DOI:
基金项目:国家发改委移动互联网及第四代移动通信(TD-LTE)产业化专项(发改办高技\[2014\]2328号);粤港关键领域重点突破项目(2011A011305001)
Real-time forecasting urban traffic state based on cell phone signaling
ZHAN Yiwang,HU Binjie
()
Abstract:
In order to make accurate and real-time prediction of traffic state, the factors influencing traffic is analyzed and the decision tree algorithm is adopted to model the data of velocity and environmental factors to determine the rules of traffic congestion. Then, according to the real-time mobile users and environmental factors data, the traffic state is predicted with the generated rules. Experiment in Baoding City, Hebei Province proves the effectiveness of the proposed method. It is also found that the method based on decision tree algorithm has a high expansibility.
Key words:  smart city  intelligent traffic  traffic state prediction  cell phone signaling  decision tree  random forest
安全联盟站长平台