首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 罗 琦.一种最大分类间隔SVDD的多类文本分类算法[J].电讯技术,2014,54(4): - .    [点击复制]
  • LUO Qi.A multi-class text categorization algorithm based on maximal classification margin SVDD[J].,2014,54(4): - .   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 3579次   下载 2575 本文二维码信息
码上扫一扫!
一种最大分类间隔SVDD的多类文本分类算法
罗琦
0
(中国西南电子技术研究所,成都 610036)
摘要:
文本分类是信息检索和文本挖掘的关键技术之一。提出了一种基于支持向量数据描述(SVDD)的多类文本分类算法,用支持向量描述训练求得包围各类样本的最小超球体,并使得分类间隔最大化,在测试阶段,引入基于核空间k-近邻平均距离的判别准则,判断样本所属类别。实验结果表明,该方法具有很好的泛化能力和很好的时间性能。
关键词:  信息检索  文本挖掘  文本分类  支持向量数据描述  多类分类器
DOI:
基金项目:
A multi-class text categorization algorithm based on maximal classification margin SVDD
LUO Qi
()
Abstract:
Text categorization is one of the key technology to retrieve information and mine text.This paper proposes a multi-class text categorization algorithm based on maximal classification margin SVDD(Support Vector Data Description).This algorithm trains multi-class samples with support vector data description,then computes a minimal super spherical structure which can surround all samples and has maximal margin between each class. In the phase of testing,this algorithm classifies samples with a criterion of average distance based on KNN(K-Nearest Neighbor). The test result shows this algorithm has good generalization capability and good time efficiency of text categorization.
Key words:  information retrieving  text mining  text categorization  support vector data description(SVD)  multi-class classifier
安全联盟站长平台