首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 路翠华,李国林,谢 鑫,等.基于相关特性的改进G-SVSLMS算法[J].电讯技术,2013,53(10): - .    [点击复制]
  • LU Cui-hua,LI Guo-lin,XIE Xin,et al.Improved G-SVSLMS algorithm based on correlation characteristics[J].,2013,53(10): - .   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 3465次   下载 2304 本文二维码信息
码上扫一扫!
基于相关特性的改进G-SVSLMS算法
路翠华,李国林,谢鑫,奚晓梁
0
(海军航空工程学院 7系,山东 烟台 264001)
摘要:
为解决改进的基于Sigmoid函数变步长最小均方(G-SVSLMS)算法步长更新公式易受噪声干扰的问题,根据高斯白噪声相关性比较差的特性,对G-SVSLMS算法进行改进,提出基于相关特性的改进G-SVSLMS算法,使算法的抗噪声干扰能力明显增强。理论分析和仿真结果表明:若两算法选取相同参数,则基于相关特性的改进G-SVSLMS算法相对于G-SVSLMS算法具有小的稳态误差;在保证算法收敛的条件下,基于相关特性的改进G-SVSLMS算法相对G-SVSLMS算法具有较快的收敛速度。
关键词:  信号处理  噪声抑制  G-SVSLMS算法  相关性  稳态误差  收敛速度
DOI:
基金项目:
Improved G-SVSLMS algorithm based on correlation characteristics
LU Cui-hua,LI Guo-lin,XIE Xin,XI Xiao-liang
()
Abstract:
The G-SVSLMS algorithm′s step-formula can be disturbed easily by noise jamming. According to the characteristics that the correlation of white Gaussian noise is bad, improved G-SVSLMS algorithm based on the correlation characteristic is put forward in order to improve G-SVSLMS algorithm′s ability of anti-noise. If two algorithms choose the same parameters, improved G-SVSLMS algorithm based on the correlation characteristics will have less steady-state error than G-SVSLMS algorithm. Under the condition that the two algorithms are convergent, the convergence rate of improved G-SVSLMS algorithm is bigger than that of G-SVSLMS algorithm.Improved G-SVSLMS algorithm′s performance is testified through theoretical analysis and simulation.
Key words:  signal processing  noise suppression  G-SVSLMS algorithm  correlation characteristic  steady-state error  convergence rate
安全联盟站长平台