首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 陈永辉,胡强,覃团发,李悦.基于动态分组的球形译码算法[J].电讯技术,2008,48(11): - .    [点击复制]
  • .Sphere Decoding Algorithm Based on Dynamic Grouping[J].,2008,48(11): - .   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 3581次   下载 56 本文二维码信息
码上扫一扫!
基于动态分组的球形译码算法
0
()
摘要:
在MIMO信号检测中,采用最大似然算法可以使系统的误码率最低,但最大似然算法要搜索整个信号空间,计算速度相当慢。球形译码算法性能最接近最大似然算法,它通过减少需要比较的信号点可大大降低计算量。提出了动态分组的球形译码算法,对传统球形译码算法进行了改进。仿真结果表明,所提算法可以根据M IMO系统的需要进行动态调整,可在小信噪比时降低误码率,大信噪比时提高译码速率。
关键词:  多入多出系统,信号检测,最大似然算法,球形译码算法,动态分组,连续干扰抵消(SIC)算法
DOI:
基金项目:广西高校人才小高地建设创新团队资助计划项目
Sphere Decoding Algorithm Based on Dynamic Grouping
()
Abstract:
Using maximum-likelihood(ML) algorithm in signal detection of MIMO system,the lowest bit error rate(BER) can be achieved,but the ML algorithm needs to search the whole signal space,which makes the computation speed quite low.The sphere decoding algorithm approximates to the ML algorithm in performance.By reducing the number of required comparisons,the decoding complexity is reduced significantly.The simulation results show that the proposed algorithm can make dynamic adjustment according to the need of MIMO system,the bit error rate(BER) is reduced when the signal-to-noise ratio(SNR) is low and the decoding speed is raised when the SNR is high.
Key words:  MIMO system,signal detection,maximum-likelihood(ML) algorithm,sphere decoding algorithm,dynamic grouping,SIC algorithm
安全联盟站长平台