首页期刊简介编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 韦保林,岳宏卫,周 茜,等.植入式生物医学电子的UWB无线通信可行性建模研究[J].电讯技术,2013,53(3): - .    [点击复制]
  • WEI Bao-lin,YUE Hong-wei,ZHOU Qian,et al.Research on feasibility modeling of ultra-wideband wireless communication for biomedical implantable electronic devices[J].,2013,53(3): - .   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 1588次   下载 115 本文二维码信息
码上扫一扫!
植入式生物医学电子的UWB无线通信可行性建模研究
韦保林,岳宏卫,周茜,韦雪明,徐卫林,段吉海
0
(桂林电子科技大学 信息与通信学院,广西 桂林 541004)
摘要:
为考察超宽带(UWB)实现植入式生物医学电子设备无线通信的可行性及信道传播特性,基 于男性活体C T及MRI切片图像,构建了一个频率范围在1~10.8 GHz的高分辨率三维人体电磁模型 ,考虑了85种不同人体组织或器官的电磁特性参数;将模型嵌入基于有限积分法(FIT)的 三维电磁仿真软件进行电磁计算,考察电磁波在人体内的路径损耗及比吸收率特性。实验结 果表明:该模型能较好地描绘真实人体的电磁特性, 信号在人体内的衰减随频率的升高及植 入深度的加深而加重;在植入深度达160 mm时,3.5 GHz信号的路径损耗为75 dB ;参考功率为27 dBm时,人体对3.5 GHz信号的比吸收率在安全值范围内;证实 了采用UWB频段内的3.5 GHz实现植入式生物医学电子无线通信的可行性和安全性。
关键词:  可植入式设备  超宽带  人体电磁模型  电磁辐射  有限积分法
DOI:
基金项目:国家自然科学基金资助项目(61166004, 61264001,61161003);桂 林电子科技大学博士启动基金(UF10028Y,UF12001Y)
Research on feasibility modeling of ultra-wideband wireless communication for biomedical implantable electronic devices
WEI Bao-lin,YUE Hong-wei,ZHOU Qian,WEI Xue-ming,XU Wei-lin,DUAN Ji-hai
()
Abstract:
To investigate the feasibility and channel propagation characterization of Ultra wideband(UWB) wireless communication for biomedical implantable electronic de vices, a highresolution 3D electromagnetic model of human body based on computed tomography(CT) and magnetic resonance imaging(MRI) segmented images of living human males is presented, the frequency range is 1~10.8 GHz, and the electromagnetic characters for 85 different kind of human tissues or org ans are considered. The model is embedded in 3D electromagnetic(EM) simulator based on finite integration technique(FIT) for electromagnetic computation to i nvestigate the path loss and specific absorption rate(SAR) in body. Experiment result shows that the model can well characterize the electromagnetic characters of real human body, the signal loss is aggravating with the higher frequency and deeper implant depth; the path loss for 3.5 GHz is 75 dB under an implant depth of 160 mm and, with a reference power of 27 dBm, the S AR in body for 3.5 GHz is under the safety region. These results demonstrate t he feasibility and security of applying 3.5 GHz on UWB for wireless communic ation in biomedical implantable devices.
Key words:  implantable devices  ultra wideband(UWB)  electromagnetic model of human body  electromagnetic radioactive  finite integration technique(FIT)
安全联盟站长平台