doi:10.3969/j.issn.1001-893x.2014.08.019

引用格式:赵飞义,张万荣,丁春宝,等. 基于噪声抵消技术的低功耗 C 频段差分低噪声放大器[J]. 电讯技术,2014,54(8):1140-1145. [ZHAO Fei-yi,ZHANG Wan-rong, DING Chun-bao, et al. A Low Power Differential C-band Low Noise Amplifier Based on Noise Cancellation Technology[J]. Telecommunication Engineering,2014,54(8):1140-1145.]

基于噪声抵消技术的低功耗 C 频段差分低噪声放大器*

赵飞义1,***,张万荣1,丁春宝1,陈昌麟1,胡瑞心1,卓汇涵1,江之韵1,白 杨1,陈 亮2

(1.北京工业大学 电子信息与控制工程学院,北京 100124;2. 泰山学院 物理与电子工程学院,山东 泰安 271000)

摘 要:设计了一款基于噪声抵消技术的低功耗 C 频段的差分低噪声放大器。该放大器由输入级、 放大级以及输出缓冲级 3 个模块构成,其中输入级采用电容交叉耦合的差分对与直接交叉耦合结构 差分对级联,实现输入匹配及噪声抵消;放大级采用具有电阻-电感并联反馈的电流复用结构来获 得高的增益、良好的增益平坦性及低的功耗;输出缓冲级采用源跟随器结构,实现良好的输出匹配。 基于 TSMC 0.18 μm CMOS 工艺库,验证表明在 C 频段,放大器的增益为 20.4 ±0.5 dB,噪声系数介 于 2.3~2.4 dB之间,输入和输出的回波损耗均优于-11 dB,稳定因子恒大于 1,在6.5 GHz 下,1 dB 压缩点为-16.6 dBm,IIP3 为-7 dBm,在2.5 V电压下,电路功耗仅为6.75 mW。

关键词:差分低噪声放大器;噪声抵消;电流复用;增益平坦度;低功耗

中图分类号:TN722.3 文献标志码:A 文章编号:1001-893X(2014)08-1140-06

A Low Power Differential C-band Low Noise Amplifier Based on Noise Cancellation Technology

ZHAO Fei-yi¹, ZHANG Wan-rong¹, DING Chun-bao¹, CHEN Chang-lin¹, HU Rui-xin¹, ZHUO Hui-han¹, JIANG Zhi-yun¹, BAI Yang¹, CHEN Liang²

(1. College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China;
 2. College of Physics and Electronic Engineering, Taishan University, Tai'an 271000, China)

Abstract: In this paper, a low power differential low noise amplifier(LNA) for C-band application based on noise cancellation technology is presented. The LNA consists of input stage, amplifier stage and output buffer stage. The input stage realizes the input match and noise cancellation by a cascade of the differential pairs of direct cross coupling and cross coupling. Current reuse structure with resistance-inductance parallel feedback is adopted at amplifier stage to obtain high gain, good gain flatness and low power consumption. The output stage employs a source – follower to achieve excellent output match. Based on TSMC 0.18 μ m CMOS process library, the simulation results show that over the C-band, the gain is 20.4 \pm 0.5 dB, noise figure over 2.3 ~2.4 dB, input and output match loss is below –11 dB, stable factor than 1, 1 dB compress point is –16.6 dBm, IIP3 is –7 dBm at 6.5 GHz. With the power supply voltage of 2.5 V, the circuit power consumption is only 6.75 mW.

Key words: differential LNA; noise cancellation; current reuse; gain flatness; low power consumption

^{*} 收稿日期:2014-03-04;修回日期:2014-05-19 Received date:2014-03-04;Revised date:2014-05-19

基金项目:国家自然科学基金资助项目(60776051,61006044,61006059);北京市自然科学基金资助项目(4082007,4142007,4143059);北京市教委 科技发展计划项目(KM200710005015,KM200910005001);北京市人才强教深化计划-服务北京创新人才培养项目 (0020005412A001);北京市优秀跨世纪人才基金项目(67002013200301);山东省高等学校科技计划项目(J13LN09)

Foundation Item: The National Natural Science Foundation of China(No. 60776051, 61006044,61006059); Beijing Natural Science Foundation (No. 4082007, 4142007, 4143059); Development Project of Beijing Municipal Commission of Science and Technology (KM200710005015, KM200910005001); Beijing City Talent Education Deepen Plan – Service Beijing Innovation Talents Training Project(0020005412A001); Beijing City Outstanding Cross Century Personnel Project(67002013200301); Project of Shandong Province Higher Educational Science and Technology Program(J13LN09)

^{*} 通讯作者;zhaofeiyi@emails.bjut.edu.cn Corresponding author;zhaofeiyi@emails.bjut.edu.cn

1 引 言

2002年2月14日,美国联邦通信委员会批准 将超宽带(Ultra-wide Band, UWB)无线技术应用于 民用产品,任何人不必申请就可以使用超宽带频段 3.1~10.6 GHz进行通信, 掀起了 UWB 技术应用于 民用无线通信的研究热潮^[1]。

低噪声放大器作为接收机的第一级,它必须具 有低噪声、高增益、良好的线性度以保证接收机的性 能,而放大器的拓扑结构对其性能有非常重要的影 响^[2]。单端放大电路因为其低功耗、低成本优点被 广泛应用,然而差分放大电路因其独有的性能,比如 抵消二次谐波、抑制衬底噪声以及抑制共模信号 等^[3-5],近些年来在射频集成电路设计中,尤其是在 零中频或直接变频的通信系统中,得到了越来越广 泛的应用。

差分结构电路是由两个单端电路构成,它的功耗 是单端电路的2倍,另外,由于差分结构电路存在2 倍于单端电路的电阻,其热噪声也是单端电路的2 倍,所以差分结构电路在功耗与噪声方面处于劣势。 本文提出的差分结构电路采用电流复用技术与噪声 抵消技术,在功耗与噪声方面取得了良好的性能。论 文安排如下:第2节给出电路拓扑,并进行了性能分 析;第3节给出仿真验证结果及分析;第4节为结论。

2 电路拓扑及性能分析

图1为本文所提出的差分低噪声放大器原理 图,主要包括3个模块:输入级、放大级、输出缓冲 级。输入级采用直接交叉耦合的差分对与电容交叉 耦合的差分对的级联结构,实现输入匹配及噪声抵 消。放大级采用电阻-电感并联反馈的电流复用结 构,实现良好的增益平坦度及较高的增益。输出缓 冲级采用源跟随器结构,实现良好的输出匹配。下 面将分别从3个模块的拓扑结构及性能方面进行详 细阐述与分析。

图 1 C 频段差分低噪声放大器 Fig. 1 Schematic of proposed C-band differential LNA

2.1 输入级的输入匹配及噪声抵消的实现

输入级由直接交叉耦合的差分对与电容交叉耦 合的差分对级联构成。对于差分电路,考虑到对称 型,我们只对一半电路进行分析,如图 2 所示。其中, g_{m1} 为 M_1 管的跨导, g_{m3} 为 M_3 管的跨导, Z_L 为后级的等效阻抗。

由图2(b)可推得输入阻抗为

$$Z_{\rm in} = \frac{1}{2g_{m3} - g_{m1}} \tag{1}$$

由(1)式可知,通过调节 *M*,或 *M*₁管的宽长比, 改变 *M*₃和 *M*₁的跨导值,可实现阻抗匹配。

由 Friis 公式可知,系统的噪声性能主要由第一级决定^[6-7],作为第一级的电容交叉耦合差分对作共栅输入,与其他共栅结构一样,具有较高的噪声。本文引入直接交叉耦合差分对与电容交叉耦合差分对级联,使噪声在两端同相输出,将 M₃、M₄管的大部分 噪声抵消掉,使得该放大器取得了良好的噪声性能。 图 3 为噪声抵消原理图,其中 I_{n3}为 M₃的噪声电流源, Z 表示后级输出缓冲模块,以阻抗形式表示。

噪声电流源 $I_{n,M3}$ 在输出节点 Y_1 产生的输出噪 声电压为 V_{nout} -Y1 $M3 = -I_{n,M3}Z$,在节点 X_1 产生噪声 电压 $V_{X1,M3} = I_{n,M3}R_s$, X_1 节点的噪声电压经过 M_2 反相 放大后在节点 X_2 产的噪声电压为

$$V_{X2,M3} = -\frac{I_{n,M3}R_s^2 g_{m2}}{1 + g_{m4}R_s}$$
(2)

其中 g_{m2} 、 g_{m4} 分别是 M_2 和 M_4 的跨导。 $V_{X1,M3}$ 和 $V_{X2,M3}$ • 1142 • 在 M₄的栅源之间产生电压差,经 M₄放大后在输出 端产生的噪声电压为

$$V_{\text{nout-},Y2|M3} = -I_{n,M3} Z(g_{m4} R_s + \frac{R_s^2 g_{m2} g_{m4}}{1 + g_{m4} R_s})$$
(3)

$$V_{nout-,Y1|M3} = V_{nout-,Y1|M3} - V_{nout-,Y2|M3}$$
(4)

在输入匹配的条件下($R_s = 1/g_{m4}$),将式(2)和式(3)代入式(4),最终可化简为

$$V_{\text{nout}|M3} = \frac{R_{\text{s}}g_{m2}}{2} I_{n,M3} Z \tag{5}$$

由式(5)可知,经噪声抵消后,噪声减小到原来的 $R_{sg_{m2}}/2$ 。对于差分电路, R_s 为25 Ω , g_{m2} 约为10 ms 左右,所以 $R_{sg_{m2}}/2$ 约为0.1,抵消了约90%由 M_3 管 引起噪声信号,从而改善整个电路的噪声性能。

2.2 采用电流复用技术的放大级性能分析

电流复用技术可以有效提高增益并不增加过多 功耗,但受增益带宽积限制,加剧了增益的不平坦 性。对此,本文加入了电阻电感并联负反馈,以略微 降低增益的代价,实现良好的增益平坦性^[8]。对于 差分电路,考虑到对称型,只对一半电路进行分析, 如图4所示。

(b)带电阻电感并联反馈的电流复用连接结构
 图 4 连接结构
 Fig. 4 Connection structure

在 C 频段,电容 C_5 和 C_3 的电抗值很小,可按短路处理。显然,图4(a)和图4(b)的交流通路相同, 而采用电流复用结构的图4(b)共用一个直流偏置, 减小了功耗。图 5 为包含输出缓冲电路的小信号等效电路图。为了分析简便,只考虑栅源寄生电容。

图 5 包含输出缓冲电路的小信号等效电路图 Fig. 5 Equivalent circuit diagram of small signal containing output buffer circuit

在没有加电阻-电感并联反馈时,只考虑栅源 电容时,可推得电压增益为

$$\frac{v_{\text{out}}}{v_{\text{in}}} = \frac{2s^2 g_{m3} g_{m5} L_1 L_5 R_L(g_{m7} + sC_{gs7})}{(2R_s C_{gs3} + 1) (s^2 L_1 C_{gs5} + 1) (s^2 L_5 C_{gs7} + sR_L C_{gs7} + g_{m7} R_L + 1)}$$
(6)

由式(6)可知,该系统有3个零点以及5个极 点,其中由因式($sC_{gs7}+g_{m7}$)和($2sR_sC_{gs3}+1$)产生的 零点与极点远在频段之外,不予考虑,而因式 ($s^2L_1C_{gs}+1$)在复平面的虚轴上产生两个共轭极点, ($s^2L_5C_{gs7}+sR_LC_{gs7}+g_{m7}R_L+1$)在左半平面产生两个共 轭极点。这4个极点在频段内抵消由零点 $s^2=0$ 引 起的增益上升而使增益曲线以斜率-40 dB/dec 变化。

加上电阻-电感并联反馈后,由图5可推得电 压增益为

$$\frac{v_{\text{out}}}{v_{\text{in}}} = \frac{\dot{i}_{d3} v_1 v_2 v_{\text{out}}}{v_{\text{in}} \dot{i}_{d3} v_1 v_2} \tag{7}$$

$$\begin{split} \nexists \oplus \frac{i_{d3}}{v_{\text{in}}} &= \frac{2g_{m3}}{2R_s s C_{gs3} + 1}, \\ \frac{v_2}{i_{d3}} &= \frac{Z_1 Z_2 \parallel (Z_2 \parallel Z_3) (Z_2 \parallel Z_1) (1 - g_{m5})}{Z_1 Z_2 - Z_1 (Z_2 \parallel Z_3) (Z_1 \parallel Z_2) (1 - g_{m5})}, \\ \frac{v_{\text{out}}}{v_2} &= \frac{R_L (s C_{gs7} + g_{m7})}{1 + s R_L C_{gs7} + R_L g_{m7}}, \\ Z_1 &= s L_1 \parallel \frac{1}{s C_{gs5}}, \\ Z_2 &= R_1 + s L_3, \\ Z_3 &= \frac{s^2 R_L C_{gs7} L_5 + s L_5 (R_L + g_{m7})}{s^2 C_2 Z_L + s R_L C_2 + R_L g_2 + 1} \circ \end{split}$$

在 C 频段, sC_{gs3}、sC_{gs5}、sC_{gs7}都远小于 1,则式(7) 可化简为

$$\frac{v_{\text{out}}}{v_{\text{in}}} \approx \frac{2g_{m3}sL_1L_5(R_1+sL_3)}{s^2g_{m5}L_1L_5+s(L_1+L_3+L_5)+R_1}$$
(8)

由因式 $s^2 g_{ms} L_1 L_5 + s(L_1 + L_5 + L_3) + R_1$ 产生的两个 极点可以估算为: $P_1 \approx L_1 + L_5 + L_3 / g_{ms} L_1 L_5$, $P_2 \approx R_1 / L_1 + L_5 + L_3$ 。可以看出 P_1 点在 C 频段之前抵消了由 s = 0的零点引起的增益上升, 通过调节 $R_1 \ L_1 \ L_5$ 和 L_3 的 值, 使 $P_2 = J(R_1 + sL_3)$ 产生的零点抵消掉, 从而整个 放大器在 C 频段的传输函数近似为常数, 获得了良 好的增益平坦度。

2.3 输出缓冲级输出匹配的实现

输出缓冲级电路采用源跟随器结构,如图 6 所示。其中, R_3 和 R_4 为串联电阻分压结构,为 M_9 和 M_{10} 和提供偏置, M_{10} 管作 M_8 管的电流源负载。 M_8 管 采用源跟随器连接结构,所以其输出阻抗 Z_{out} 为 M_8 管跨导的倒数 $1/g_{m8}$ 。通过调节 R_3 、 R_4 的电阻值和 M_{10} 、 M_8 的宽长比,改变 M_8 的跨导值,可以实现输出 阻抗匹配。

图 6 输出缓冲级电路拓扑图 Fig. 6 Circuit topology of the output buffer

2.4 电路稳定性分析

直接交叉耦合差分对是振荡器中的一个拓扑结构,振荡条件是 $g_{m1}R_{P1}g_{m2}R_{P2} \ge 1$,其中 R_{P1} 、 R_{P2} 是 M_1 、 M_2 的负载电阻^[9]。在本文所提出电路中, R_{P1} 和 R_{P2} 分别是 $1/g_{m3}$ 、 $1/g_{m4}$ 。由于 M_3 和 M_4 的跨导是大于 M_1 与 M_2 的跨导,所以振荡条件不成立。同时,在采用电流复用技术的 M_5 、 M_6 管的栅端和漏端加入了电阻-电感并联负反馈,进一步增加了系统稳定性。

3 仿真结果及分析

本文基于 TSMC 0.18 μm CMOS 工艺库,采用 安捷伦射频仿真软件 ADS 对电路进行了仿真验证。 图 7 和图 8 为电路 S 参数仿真结果,可以看出在整 个 C 频段, S11 小于-11 dB, S22 小于-18 dB,匹配 良好,增益是 20.4 ±0.5 dB,增益平坦度良好。

由前面对噪声的分析可知, M_1 、 M_2 管的跨导值 对噪声有着明显的影响,图 9 为不同跨导下的电路 的噪声情况。可以看出,当 M_1 、 M_2 管跨导为9.5 ms 时,该放大器取得最小噪声,但较大的跨导值意味着 较大的功耗,所以我们选取跨导值为5.8 ms,在功耗 与噪声方面取得了良好的折衷。

图 9 M₁和 M₂不同跨导的噪声仿真结果

Fig. 9 Noise figure under different $g_{\scriptscriptstyle m}$ of M_1 and M_2

IIP3 和1 dB压缩点是衡量放大器线性度最普遍的方法。图 10 和图 11 分别是 IIP3 与1 dB压缩点在中心频率6.5 GHz时的仿真结果,可以看出 IIP3 为

-7 dBm,1 dB压缩点为-16.6 dBm,说明该放大器线 性度良好。

图 11 1 dB 压缩点仿真结果

Fig. 11 The simulation result of 1 dB compression point

图 12 为稳定性仿真结果。本文采取 μ 因子判 别法,相比于传统的K因子和 Δ 因子判别法, μ 因子 判别更直接方便,稳定条件只需满足 $\mu>1$ 即可^[10]。 从图 12 可以看出,在整个频带内, μ 恒大于 1,系统 绝对稳定。

图 12 稳定因子 μ 仿真结果 Fig. 12 Stable factor μ versus frequency

表1提供了本文所提出电路与近些年来已发表 的差分低噪声放大器的性能参数比较。从噪声与功 耗方面的比较可以验证本文所提出电路采用噪声抵 消技术与电流复用技术的实用性,本文所提出电路 的其他性能参数也均符合低噪声放大器的性能 指标。

Table 1 Performance parameters comparison between proposed UWB differential LNA and other published LNAs in recent years									
低噪声 放大器	提出时间 /年	工艺/µm	BW/GHz	<i>S</i> 11/dB	<i>S</i> 22/dB	<i>S</i> 21/dB	<i>NF/</i> dB	功耗/mW	IIP3/dBm
文献[2]	2009	0.35	2.5	-11.5	-25	29.1	1.316	11.1	-0.241
文献[3]	2010	0.18	$6.0 \sim 9.0$	<-14.00	<-12.00	14.00	5.490 ~ 6.900	29.00	N/A
文献[4]	2010	0.09	$6.0 \sim 9.0$	<-13.00	N/A	22.50	2.550 ~ 3.700	2.30	3.57
文献[5]	2012	0.18	40.0	<-16.70	<-12.80	8.87	4.150	6.50	N/A
文献[6]	2013	0.13	2.0	<-9.78	<-11.42	22.53	2.850	16.20	-18.23
本文	2013	0.18	4.0~8.0	<-17.00	<-10.70	20.00	2.300 ~ 2.400	6.75	-7.00

表 1 本文设计的放大器与近些年来已发表的差分低噪声放大器的性能参数比较

注:N/A 表示没有具体数值。

4 结 论

本文设计了一款基于噪声抵消技术的低功耗 C 频段差分低噪声放大器。采用噪声抵消技术与电流 复用技术实现了低噪声和低功耗,并对输入匹配、噪 声、增益平坦度、输出匹配、电路稳定性方面进行了 较严格的理论推导。基于 TSMC 0.18 µm CMOS 工 艺库,采用安捷伦射频仿真软件 ADS 对电路进行了 仿真验证,仿真结果验证了推导的正确性,并且由表 1 给出的的性能参数对比可以看出,在噪声与功耗 方面,本文所提出电路采用的噪声抵消技术与电流 复用技术对于差分结构的低噪声放大器设计,在减 小噪声和功耗方面具有借鉴意义。

参考文献:

- Thomas H L. The Design of CMOS Radio-Frequency Integrated Circuits [M]. Beijing: Publishing House of Electronics Industry, 2012: 268-271.
- [2] Gao Zhen-dong, Li Zhi-qiang, Zhang Hai-ying. A 6-9GHz Ultra-Wideband CMOS Differential LNA for China UWB standard[C] //Proceedings of 2010 IEEE International Conference on Ultra – Wideband. Beijing: IEEE, 2010: 1-4.
- Zhang Hua bin, Cai Min, Chen Hong lin, et al. A
 2. 5GHz BiCMOS Low Noise and High–Gain Differential LNA for WLAN Receiver [C]//Proceeding of Asia Pacific Conference on Postgraduate Research. Shanghai: IEEE, 2009:33–36.
- [4] Wang Peng, Jonsson F, Zheng Li-rong. A Novel Low-power Fully-differential Current-reuse Cascaded CG-CS-LNA for 6-9-GHz UWB Receivers [C]//Proceedings of 2010 IEEE International Conference on Electronics, Circuits, and Systems. Athens, Greece; IEEE, 2010;1188-1191.
- [5] Khalili M S, Jalali M. A Capacitor Cross-Coupled Differential Cascode Low-Noise Amplifier [C] //Proceedings of 2012 IEEE International Conference on Electronics Design, Systems and Applications. Kuala Lumpur, Malaysia: IEEE, 2012: 212-215.

- [6] Swamy M N, Acharya D P. A Power Improvement Technique for a Differential LNA[C] //Proceedings of 2013 Students Conference on Engineering and Systems. Allahabad, India: IEEE, 2013: 1-5.
- [7] 孟真,阎跃鹏. C 频段宽带低噪声放大器模块设计与 实现[J]. 电讯技术,2010, 50(1):95-102.
 MENG Zhen, YAN Yue-peng. Design and realization of a C-band wideband low noise applifier module[J]. Telecommunication Engineering, 2010, 50(1):95-102. (in Chinese)
- [8] 肖勇,樊勇,闫鸿,等. 0.5~3.3GHz 超宽带低噪声放 大器设计[J]. 电讯技术,2009, 49(12): 105-108.
 XIAO Yong, FAN Yong, YAN Hong, et al. Design of an Ultra-wideband LNA in 0.5~3.3GHz[J]. Telecommunication Engineering, 2009, 49(12): 105-108. (in Chinese)
- [9] Behzad R. 模拟 CMOS 集成电路设计[M]. 陈贵灿,程 军,张瑞智,等,译. 西安:西安交通大学出版社, 2009:402-405.
 Behzad R. Design of Analog CMOS Integrated Circuits [M]. Translated by CHEN Gui - can, CHENG Jun, ZHANG Rui-zhi, et al. Xi'an: Xi'an Jiaotong University Press, 2009: 402-405. (in Chinese)
- [10] Richard C H L. 射频电路工程设计[M]. 鲍景富,唐 宗熙,张彪,译. 北京:电子工业出版社,2011:4-10.
 Richard C H L. RF circuit design[M]. Translated by BAO Jing-fu,TANG Zong-xi,ZHANG Biao. Beijing: Publishing House of Electronics Industry,2011:4-10. (in Chinese)

作者简介:

赵飞义(1989—),男,河北石家庄人,硕 士研究生,主要研究方向为射频集成电路;

ZHAO Fei-yi was born in Shijiangzhuang, Hebei Province, in 1989. He is now a graduate student. His research direction is RFIC design. Email;zhaofeiyi@emails.bjut.edu.cn

张万荣(1964—),男,河北人,教授、博士 生导师,主要从事射频器件和射频集成电路的研究。

ZHANG Wan-rong was born in Hebei Province, in 1964. He is now a professor and also the Ph. D. supervisor. His research concerns RF device and RFIC design.

Email: wrzhang@ bjut. edu. cn