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Abstract: A method based on hybrid finite element method(FEM) and fast inhomogeneous plane wave algorithm
(FIPWA) is proposed to solve the electromagnetic scattering problem for bodies of revolution (BOR) with inho-
mogeneous, composite materials. The FEM with mixed edge-based and node-based elements is used for repre-
senting the interior electric field, while the FIPWA is used as the exact boundary condition, hybrid triangular
and pulse basis functions are used for representing the electric field and magnetic field on the boundary. Both
the memory and CPU time requirements are reduced for large scale BOR problems. Numerical results are given
to demonstrate the validity and the efficiency of the proposed method.
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1 Introduction

The electromagnetic problem for bodies of revolution
(BOR) of arbitrary shape with different kinds of materials

has been widely discussed for several decades!! ~00 . 1

n
this work, FEM-BI is presented to analyze the scattering
of BOR with inhomogeneous materials, and extend the fast
inhomogeneous plane wave algorithm to accelerate the

computation of the method of moment(MoM) . Finite Ele-
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ment Method( FEM) is used to analyze the interior electric
field. Edge-based and node-based elements are used to
represent the interior electric field. While for the exterior
region, Boundary Integration (BI) is used as a exact
boundary condition. Triangular and pulse basis functions
are used to represent the electric and magnetic fields on
the boundary. The aggregation and disaggregation factors
in Fast Inhomogeneous Plane Wave Algorithm ( FIPWA )
can be derived analytically. Both the memory requirement

and the CPU time are saved for large scale BOR prob-
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lems. Numerical results are given to demonstrate the va-

lidity and the efficiency of the presented method.

2 FEM-FIPWA for Axisymmetric Resonators

2.1 Body of revolution

Because of the symmetry of the geometry, the vol-
ume of the BOR is generated by revolving a plane curve
about the z-axis as shown in Figure 1. Here (p, $, z)
are the variables in cylindrical coordinate system, 6™ is
the angle of incident wave, ¢ and ¢ are the unit vectors,

S is the surface of the BOR.

~>

X

Fig.1 Body of revolution and coordinate system
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The electric and magnetic fields can be expressed in

a Fourier series:

©

E(p,$,2) = >, [E, . (p,z) + $E4 . (p,z)]e™
(1)
H(p,$,2) = D) [H, ,(p,2) + BH, ,(p,2) e

(2)
where E, ., Es ., H, , and Hy ,, are the electric and
magnetic fields in the meridian plane and the azimuthal
component of the m-th Fourier mode, respectively. As
the fields are decomposed into two parts as shown in E-
quation (1 —2), only a 2 — D mesh (meridian cross sec-
tion) is needed for analyzing the 3 — D axisymmetric prob-
lem. These different modes can be treated separately be-
cause of the orthogonality. In the cylindrical coordinate
system, the unit vectors ¢ and ¢ are defined as

t = sinfcos$x + sinfsindy + cosbz (3)
$= - sin¢):f + cos¢;’ (4)
.94 -

where 0 is the angle between the z-axis and the unit vec-
tor £. ¢ is the azimuthal angle as shown in Figure 1.
2.2 FEM for the interior region

As shown in Figure 2, the interior region of the BOR
is filled with inhomogeneous material with the relative
permittivity €, and the relative permeability y,. Both e,
and ., are the function of z and p, but independent of ¢.

Fig.2 The mesh for the interior and exterior regions
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The vector Helmholiz equation for the electric field

can be written as
-V x(u7 'V XE) + ke ,E = jayed + V x 1] M=,
(5)
where S, is the source term, and k; is the wave number
in free space. If it is source free (S, =0) in the interior
region the weak form of the vector wave equation can be

expressed asl’ %

JQ( V x W) (u'v x E)dQ —Jgk%Wl - e, EdQ =

jmeW, - (n x H)S (6)

where W, is the testing function, and g is the perme-
ability of the free space.

The fields must retain the continuity for any values of
$ on the z-axis (p =0). Thus, there are three kinds of

conditions for different cylindrical modes:

E¢,0: Ep,():()s Ez’o#o, m=0
E, .1=FjEs .1, E.o=0, Iml=1 (7)
E¢,0:Ep,0:Ez,0:()v Iml>1

The basis functions for the electric field are chosen

as
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N
n Nl
Egm= D e, . (8)

i=1
s

Et,m = wet,iNi (9)

i=1
where N, is the number of nodes, N is the number of
segments (or edges) , e,.;and ey ; are the unknown coef-
ficients, and NV; and N; represent the standard node-based
and edge-based element basis functions, respectively.
The magnetic field on the boundary S is expanded as the

same as the electric field.

N
n Nl

Hp o= Dihy (10)
ol o
N,

Hl,m = Z:hl,iNL (1])
i=1

The testing function is chosen as

N N
Wo= (DIN$ + DIN)? = Wy b+ W, (12)
i=1 i=1

After substituting the basis and testing functions into
Equation (6) and making use of the orthogonality of

cylindrical modes, the wave equation can be rewritten as

271&5*( Vix W) (V,x E _,)dS +
S#r [0 {0

( Vi, m + P E, .+ ‘OE¢’m)dS -

2“J5k(2)€r<Wx,—m “E, o+ Wy e Ey)dS -

27rjsjw#op(Wt,_m + Wy ) -

(nx ($H,, + H, ,)]dS =0 (13)

A system of equations

Al A2 H G GEY [ hi
ol Lol o ol L =0 (14)

can be formed, where m is the index of the mode and b
is the index of boundary. And the matrix element can be

expressed as
K

A = ] (7 W) (i B -

e=17" 9,

k3e, W E°dS (15)
K

b
Gl = — japg > W, - (0 x EL)AS  (16)
e=1

where a and 3 are the choices for the testing function and

the basis function. e' = (e, |,e,2, " e, n)", ¢ =

(e¢,1 1€42,°77, 675,/\*‘”)119 h;; = (hz,l s h:,z’ T ht,/\'f)T’
and hf = (hgs,l yhg oy, h¢’Nf’l)T. K is the total number
of the elements, K, is the number of the boundary ele-
ments.

A seven-point numerical integration is used for the
impedance matrix assembling. The unknowns contain six

parts, the interior electric field eﬁ, and eé, the boundary
electric field e} and e}, the boundary magnetic field A}

and hj. The matrix equation for FEM part can be rewrit-
ten as

ol
Ay Ay Ay Ay 0 07 |e
Af A ALAl 0 0| el
A AgAT AL GG e
Aoy oAy ooyl |
m

=0 (17)

2.3 FIPWA for the exterior region

For the exterior region, boundary integration is ap-
plied to govern the boundary electricfield E and magnetic
fields M. The fields on the boundary S can be written as

J=nxH (18)

M=-nxE (19)

where J and M are the equivalent electric and magnetic
currents, which will satisfy the electric field integral e-

quation (EFIE) and the magnetic field integral equation
(MFIE)

ﬁinzﬁxL(])—ﬁxf{(M)—%M (20)

Ax H =i x K(J)+ 50 +nx L(M)  (2D)
where E' and H' are the incident electric and magnetic
fields, H' = 770Hi = noJ > Mo is the wave impedance in
the free space, L and K are the operators which can be

expressed as

1
L(x) = jkOJ [x+k—zv V-x|GdS (22)
s 0

K(x) = qg x x VGdS (23)

where G is the Green’s function, and the integration in
the equation above has remove the contribution of the sin-
gular point. The key process of MoM is solving the modal

Green's function g, which can be expressed as

- 05 .
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‘T oIk,

& =)o Ry
Ry = p2+p’2—2pp’cos¢+(z—z')2 (25)

For the traditional MoM, the modal Green’s function

COSTLSISdSIS (24)

has to be evaluated by numerical method, hence it is time
consuming when the radius of the BOR is large. In this
section, fast inhomogeneous plane wave algorithm ( FIP-

WA) is applied to accelerate the computation of the MoM

for bodies of revolution. Based on Weyl Identity[g‘m ,
the Green's function can be expressed as
e_-ikrjl .m kl T
Tj; = - ]ldk() kz']()(kf‘oﬁ)e ) /t| =
.kzv .
n Jd”J dusinu - 7% (26)

0 HSIP

where k = k(.;fsinucosv + Ysinusinv + Ecosu) s iy =
ksinu, k, = kcosu, r; = r; — r;. Here r; is the source
point and r; is the field point. In the following part, they
are also named sub-scatterers. The integration of the vari-
able u in Equation (26) is computed along the half Som-
merfeld integration path (HSIP) in Figure 3. Equation
(26) can be viewed as the summation of the inhomoge-
neous plane waves in different directions, which are ex-

pressed by k(u,v), and weighted by sinu .
Uy
1
Path1I |
t
| HSIP
i

Ug

o /2

Fig.3 The Sommerfeld integration path on the complex u plane

B3 ¥ A Sommerfeld B4 B84

In order to realize the Fast Inhomogeneous Plane
Wave Algorithm (FIPWA), the basis functions are divid-
ed into groups. Here we call r,, and r,, are the centers of
the groups which contain the source point r; and field
point r; respectively. As shown in Figure 4, r; = r;, +
Py + Fovi - Equation (26) can be rewritten as

2

- jk . ik ik e
= dv duslnu ‘e Jkk rjm ‘e Jkk rmm' . fr'lkl1 rim’
rj[ 21

0 SIP

e kr/.l.

(27)

- 06 -

Fig.4 The field point and the source point
K4 Y S50 s ALE A
The basis functions are divided into M groups along
the z direction as shown in Figure 5. In this way, the
factor r,,, has z component only. This character will
make the integrand decay exponentially away from the real

axis in the complex u plane.

Z b

Fig.5 The BOR is divided into groups
K5 et dn g

Equation (26) can be rewritten as
21

e T cos
— = Jva du « f(w) B, (w,v)e *Fm B, (u,v)
0 HSIP
(28)
where
f(u) :i.sinu (29)
2j
Bjm(u,v)ze_jk];'r/m (30)
Byi(u,v)=e (31)

Here the Bj-m( u,v) and B,;(u,v) represent the radia-
tion and receiving patterns for the field and source
groups, respectively. And f(u) can be considered as the
weight function. Both Bjm( u,v) and B,;(u,v) are the
inhomogeneous plane wave as u is complex. With proper
numerical methods for u and v, the integral can be ex-

pressed as
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e I 1\
i = %1 %/ Bjm(u.\-l ’U.§2>Tmm'(usl ’U.\'2>Bm'i(usl ’U"'z) =
2

D 1By (Q,) T (Q,) B0, (32)
0
where
0,= (u, v, (33)
Lo (Qg) = Ty (g 50, ) =
wiw, ;Z;l_cﬁsinusle_jkznun’(’“”sl (34)
The detail of the FIPWA can be found in Reference

[5-6].
2.4 FEM-FIPWA for BOR

The currents J and M are defined as

M(p,$.2) = > [E . (r) + 35 ()] x ne™ =

m=-%

. W M
Z [Ze’m,ipi_ e;f;ﬂﬁ[]eim?ﬁ’res
m=-% i=1 i=1 IO

(35)

J(p.$,2) = 250 x [H,,(r) + $Hy ,(r)]e" =
" N N
® x‘ . n‘ s ﬂ/\ -
Z - Lhm,épi,"' Lhm,i pt e ,rGS
m=-® i=1 i=1

(36)
where P; is the pulse basis function and T; is the tradi-
tional triangle basis function. Combining the FEM part
(interior region) and FIPWA (boundary), the matrix e-

quation can be derived as

(AL Ay AD AR 0 00 Te] g1
Af Al AL Al 0 0| e o
A AR AR c G| e |0
o ap oy o apl] 4|70 |7
0 0 Zy z, zy z ||| |V
Lo o 24 7zt ozn o zod Lagl RV

The details of the matrix elements can be found in
Reference [4 — 6] . The boundary currents and fields can
be derived by solving the equation above, and the far
field also can be solved. In the next section, two numeri-
cal results will be given to demonstrate the validity and

the efficiency of the proposed method.

3 Numerical Results

In this section, two numerical results are presented to
show the validity of the proposed FEM-FIPWA method. All

problems are solved on the same computer (Intel Core2

DuoCPU P8400@2.26GHz with 1.92GB RAM) in order to
make a fair comparison, with only one core being used.

3.1 An inhomogeneous dielectric sphere with two
layer medium

As shown in Figure 6, an inhomogeneous dielectric
sphere is computed. The sphere is excited by the plane wave
with horizontal polarization (O =P, ¢ =P, A =2 m).
The total number of the unknowns is about 40 000. The
bistatic RCS is shown in Figure 7, the result of FEM-BI (or
FEM-FIPWA ) agrees well with analytical result.

Fig.6 An inhomogeneous dielectric sphere with two-layer medium

E 6 AL BUZ A REREE

30 T T T T T
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Bistatic RCS/dBsm

1 1 1
0 30 60 90 120 150 180
oI )

Fig.7 The bistatic RCS of the dielectric sphere result
by FEM-BI compared with analytic result
B 7 A FaBku RCS MR as e b

3.2 An inhomogeneous dielectriccylinder

The numerical result proposed above shows the accu-
racy of FEM-FIPWA for BOR problems. In this section, a
more complex example is shown to verify the efficiency of
proposed method mentioned in this paper. As shown in-
Figure 8, there are seven layered medium. The thickness
of the six inner medium is 0.2 m and the height is
2.6 m. The thickness of the outer medium is 0.3 m, and
the height is 2 m. The cylinder is excited by the plane
wave with horizontal polarization (6™ =90°, ™™ = (°, A
=0.5m). The number of the total unknowns is more

- 97 -
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than 100 000 in this 2-D mesh. The field distribution de-
rived by FEM-BI is compared with Wavenology which is a
famous commercial EM software in USA. As shown in

Figure 9, the results agree well with each other.

1.5m
=2, 1=1
=1, n=2

Fig.8 The geometry of the inhomogeneous dielectric cylinder
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Fig.9 The field distribution of the dielectric
cylinder with two different methods
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As shown in Table 1, the memory requirements and
CPU times for FEM-MoM and FEM-FIPWA are com-
pared.

Table 1 The comparison between FEM-MoM and FEM-FIPWA
& 1 FEM-MoM 5 FEM-FIPWA i+ 8 Lb 3

Method Memory requirement/MB CPU time/s
FEM-FIPWA 165.6 2 258
FEM-MoM 171.9 5750

4 Conclusion

In this paper, hybrid FEM and FIPWA technique is
applied to solve the BOR scattering problem. In this
FEM-FIPWA method, the problem is separated into inte-
rior and exterior problems. In the interior region, FEM
based on hybrid edge-based and node-based elements is
used to present the electric field. In the exterior region,
boundary integration (BI) is used as the exact boundary

condition. Triangular and pulse basis functions are used

- 08 -

for representing the electric and magnetic fields on the
boundary. FIPWA is added for the BI part. The proposed
method can solve large scale bodies of revolution with in-

homogeneous, composite materials efficiently.
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